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An analys is  is made of the conditions under  which po la r  molecu les  a r e  adsorbed  at su r f aces  
of finite d imens ions .  On the bas i s  of the nonuniformity  of the e l ec t r i c - f i e ld  topography of 
an adsorben t  su r face ,  an e x p r e s s i o n  is der ived  for  the adsorpt ion  potent ial  and sui table  for  
the rmodynamic  calcula t ions  of su r f ace  phenomena.  

The  adsorpt ion  p o t e n t i a l  q~ will be defined as  the work  of adsorpt ion  fo rces  in moving an adsorba te  
molecu le  f r o m  infinity to the in te r face  between adsorpt ion  f i lm and adsorba te  vapor .  This  work is n u m e r i -  
ca l ly  equal to the exce s s  potent ia l  energy  I I - H . o  of the given molecule  in the adsorben t  field, but has  the 
opposi te  s ign.  

A quantitat ive de te rmina t ion  of r is  r a t h e r  difficult  and the p rob l em has  not yet  been solved c o m -  
pletely,  main ly  because  the exp re s s ions  for  the potent ia ls  of mo lecu la r  a d s o r b e n t - a d s o r b a t e  and adsorba te  
- a d s o r b e n t  in te rac t ion  have not been comple te ly  developed while the re  a r e  no tes t  data  avai lable  on the s ta te  
of adsorbed  molecu les  and the i r  complexes  [1]. F u r t h e r m o r e ,  the res idua l  nonhomogeneity of a solid s u r -  
face  not only makes  it difficult  to ca lcula te  the adsorpt ion  potent ia l  of a given substance  but a lso  has  a la rge  
ef fec t  on the repea tab i l i ty  of adsorp t ion  tes t  data .  For  this reason,  the de te rmina t ions  of the adsorpt ion 
potent ia l  r epo r t ed  in the technical  l i t e ra tu re  [2-5] apply main ly  to models  of pure  subs tances  with homo-  
geneous s u r f a c e s .  

Thus,  the adsorp t ion  potent ia l  of po lyd i spe r se  subs tances ,  which a r e  cons idered  in this study, can be 
calcula ted only approx ima te ly  and the p rob l em reduces  to the c o r r e c t  choice of a model  which will bes t  r e -  
p r e s e n t  the actual  adsorbent .  According to the t e s t  data  in [6, 7] per ta in ing  to su r face  p r o p e r t i e s  of v a r i -  
ous subs tances  (s i l ica  gel, wood pulp, ce rea l s ) ,  at the su r f aces  of these subs tances  there  exis t  ce r t a in  
ac t ive  groups  (for example ,  d ipo la r  H - O - r a d i c a l s ) .  The su r face  of such a sorbent  r e s e m b l e s  a dipole 
la t t ice .  Since the e l e c t r i c - f i e l d  topography of such a su r face  is nonuniform [8, 9], and also s ince it  is geo-  
m e t r i c a l l y  not homogeneous  (due to granules ,  notches,  f r ac tu re s ,  and inclusions),  hence the lat t ice is of 
finite s ize  and f o r m s  a s y s t e m a t i c  domain  s t r u c t u r e  of po res  and gaps .  The p rob lem of de te rmin ing  the 
adsorp t ion  potential  of such a model  can be reduced,  approximate ly ,  to that of calculat ing the potent ial  
ene rgy  of in te rac t ion  between a po la r  so rba te  molecule  and a finite su r face  of a dipole lat t ice in the s o r b -  
ent, the l a t t e r  c a r r y i n g  s i m i l a r l y  or iented  dipoles of hydroxyl  g roups .  

In the light of the p reced ing  d iscuss ion ,  the potential  energy  of an e las t ic  so rba te  dipole in the domain 
field cons is t s  of the  e l ec t ros t a t i c  ene rgy  due to both d i p o l e - d i p o l e  and inductive in te rac t ion  as well  as of the 
ene rgy  due to d i s p e r s i v e  in terac t ion .*  If the potential  energy  outside the field is a s sumed  equal to zero ,  thenby 
defini t ion 

*The fo r ce s  of d ipole-quadrupole  and of quadrupo le -quadrupo le  in te rac t ion  as well  as the fo rces  of s o t -  
b e n t -  so rba te  repuls ion  a r e  all  d i s r ega rded  here ,  inasmuch as in our  c a s e  the th ickness  of a po lymolecu la r  
adsorp t ion  f i lm is much  g r e a t e r  than the i n t e rmolecu la r  d i s t ances .  
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q~ = -4-(11 --17o.) = mE + 2aeoaE 'z + ~disp' (1) 

We will  now e xa m i ne  the field in tens i ty  due to a s ingle  domain ,  as  a funct ion of the d i s t ance  z f r o m  
this  domain ,  and a m e r e  qual i ta t ive  ana lys i s  of  the p r o b l e m  will  a l low us to d r a w  the fol lowing conc lu -  
s ions :  

1. At suff ic ient ly  g r e a t  d i s t ances  z the f ield m a y  be r e g a r d e d  as the f ield due to d ipoles  u n i f o r m l y  " s p r e a d .  
o v e r  a finite s m a l l  a r e a .  

2. As z d e c r e a s e s ,  the magni tude  of the field in tens i ty  b e c o m e s  app rec i ab ly  af fec ted  by the d i s -  
c r e t e n e s s  of  the d ipoles .  

Evident ly ,  a f ield due to a doma in  depends  on the two sa id  f a c t o r s :  the boundary  ef fec t  and the d i s -  
c r e t e n e s s  of  d ipo les :  

Eo ---:- Eor + /~a"  (2) 

The  E componen t  of f ield in tens i ty  a s s o c i a t e s  with the s t r o n g  bond be tween  a m o n o l a y e r  and the 0g 
adsorbent su r f ace ,  while the E0r componen t  ( together  with the d i s p e r s i v e  component)  a s s o c i a t e s  with the 
f a r - r a n g e  ef fec t  of i n t e r m o l e c u l a r  i n t e r a c t i o n  f o r c e s  dur ing  p o l y m o l e c u l a r  adsorp t ion .  

In the gene ra l  c a s e  E0 can  be ca lcu la ted  as  the sum of the field in tens i t i es  due to a!l d ipoles  in the 
la t t ice  [10]: 

(z) 
4too 

F o r  the pu rpose  of this ana lys i s ,  however ,  it is p r e f e r a b l e  to de r ive  a hmct iona i  r e l a t ion  fo r  E0(x , y, 
z) .  We, t h e r e f o r e ,  r e v e r t  to f o r m u l a  (2) and c o n s i d e r  both componen t s  s e p a r a t e l y .  We find the field p o -  
tent ia l  at any a r b i t r a r y  point  M(x0, Y0, z0) due to a plane squa re  domain  whose side is 2a and whose  a r e a  
is c o v e r e d  by un i fo rmly  d i s t r ibu ted  c h a r g e s  with the s u r f a c e  dens i ty  o r .  The potent ia l  due to a s ingle  
dipole is 

Wt r COS 

= 4~%R~ (4) 

Since R 2 = z~ + (X-Xo) 2 + (y -yo )  2 and eosf l  = z o / R  , hence  

rn ~z~ (5) 
= 4n% [z~ + (x - -  xo) s + (g - -  go)213/2 ' 

or  in d i f fe ren t ia l  f o r m  

a~zflxdg 
d~ = 4neo [~ + (x - -  Xo) z + (y - -  yo)~l 3/~' (6) 

The  field potent ia l  due to the en t i r e  a r e a  is 

arz~ t ~  dxdg 
~r = 4n% [Z0 2 + (X - -  Xo) 2 + (g - -  go)2]*/e (7) 

- - a  

An eva lua t ion  of the in t eg ra l  in (7) y ie lds  

~r = % / arctg (a + Xo) (a + Yo) + arctg ( a - -  xo) ( a - -  go) 
4a%.[ zo [z~ + (a + Xo)2 + (a + go)2]~/~ zo [z2o + (a - -  Xo)~ + (a - -  yo)~]l/2 

(a + xo) (a - -  g,,) + a r c tg  (a - -  Xo) (a + Yo) } (8) 
�9 + arctg z o [ z ~ + ( a + X o ) S + ( a _ y o ) 2 ] t / 2  Zo[Z~+(a- -xo )S+(a+Yo)2]  I/2 . 

With the aid of Eq .  (8) we find the field in tens i ty  at  the c e n t e r  point  M(0, 0, z):  
2aS% 

Eor ~- - -  g r ad ,  = ( as + zS) ( 2as -+ z2)l/2Z~eo (9) 

I f  the addi t ional  f ield due to the m i r r o r  image  of the dipole la t t ice  [10] is a l so  taken into account ,  then we 
have 

Eor=2aSar{  1 s t - - 1  1 } 
y~e ~ (a s + z 2) (2aS + zS)l/2 + �9 (10) e~ + 1 inS+ (z + L) 2] [2aS+ (z+L)2]l/2 
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Analogously we can der ive  the field potential  and the field intensi ty due to a spher ica l  domain (grain 
radius  r, domain  radius  a): 

where  

% = - - ~ e o  1 [r2 +.ir + h ) ,  2(r +h)(r~_a~)l /2 l , /~j  ~ 

p ._ a~ffr ~0 r : 2~ 0 { [r~+ (r + h) ~ 1 2  (r + h) ( r~ I a2)I/2l-a/e 

+ e~ - -  1. [r ~ + (r + h + L) ~ - -  2 (r + h + L) (r ~ - -  a~)1/21-~/~ ) 
e ~ +  1 

In o rde r  to account for  the effect  of dipole d i s c r e t enes s ,  we will use  the equation in [11]: 

- Z  
-- ~t~ ex~ (,-- Kz) [1 ~ exp (--  KI)], 
E~ = 2e~176 K,K, 

( 9 a )  

(los) 

K = 2__.~_~ (K~ + K~)'/~; K~, K , -  1, 2, 3 . . . .  
a, 

Let  us now move the or ig in  of coord ina tes  to the center  of a dipole and cons ider  a lso  the field due to the 
m i r r o r  image  of the la t t ice .  In i ts  final form,  the equation will then be 

% + 1  " 2 " 
(11) 

Inser t ing  (10) and (11) into (2), we obtain the sought exp res s ion  for  the field intensi ty due to a domain 
on the z axis  in vacuo.  In the p r e s e n c e  of an adsorpt ion  f i lm the field intensi ty will not be the s ame  on 
both s ides  of the in te r face  boundary,  because  of the additional in terac t ion  between adsorbed molecu les  
and the adsorp t ion  f i lm.  Namely,  inside the f i lm the field intensi ty is lower while above the f i lm it is 
h igher  than E 0. It  is imposs ib le  to es tab l i sh  a s imple  re la t ion  between the field intensi ty in a nonhomo- 
geneous medium,  because  E depends not only on the field but a lso  on the geome t ry  of the medium.  The 
s y s t e m  of d i f ferent ia l  equations of e l e c t ro s t a t i c s  together  with the condition of potential  continuity at the 
boundary will, however ,  r e la te  the cha rac t e r i z ing  field quanti t ies at adjacent  points and will be valid in 
any medium [12]. On this bas i s ,  one can obtain a re la t ion  for  the field intensi ty on both s ides  of the in t e r -  
face between an adsorpt ion  f i lm and its  vapor :  

2 
Eo =Eo e' + C  ' (12) 

2e' 
E~ = E 0 d' (e' + g') (13) 

The  f ield intensi ty due to a domain  depends on the t e m p e r a t u r e  (see [13], for  example) ,  according to ex-  
p r e s s i o n  (10), because  m (z-component  of the dipole moment  ~) in the express ion  for  the dipole densi ty cr 
= m / a 2 ,  is a function of the t e m p e r a t u r e  [14]. With equal  probabi l i t i es  of all  dipole or ienta t ions  in a force  
field,  the mean  s t a t i s t i ca l  value fo r  the potential  energy  of a dipole is e x p r e s s e d  as 

Vo 

< ~ > = o (14) 
%'0 

O 

Since m = gcds 0, hence the in tegra ls  in (14) yield 

c -~0=  1--cosyo cth (1--cos%) 1 + l+c_OSVo , (15) 
2 (1 - -  cos %) I - -  cos Vo 

with the d imens ion les s  p a r a m e t e r  X = u E / k T .  For  an adsorba te  molecule  f r ee  in space  we have v 0 = 7r. 
Then 

3 3 2  



For  a radical  onthe adsorbent  surface,  f ree  inside a cone with the ver tex  angle 2u 0 = 7r (free in a half-space) 
we have 

with X r = ~ r E r / k T .  

) 2 Xr + 1  , (17) 

Here E r is calculated by a summat ion of the field intensity vec tors  Er i  of all surface  radicals  in a 
domain and their  m i r r o r  images,  in accordance  with formula  (3). 

The energy  of d ispers ive  interact ion between an adsorbed molecule and all volume elements  of the 
sorbent  is calculated according to the conventional formula  in [16]. Disregarding quadrupole and quad- 
rupole-quadrupole components of interaction, we have for an infinite plane 

u CN~ ( 18  ) 
qgdisp - ~ "  6z a 

Equation (18), derived by integrating the energy of pairwise dispersive interaction over the entire 
sorbent volume, is rigorously valid when z >> d (d denoting the linear dimension of a dipole molecule). At 
small distances z it becomes necessary to take into account the discreteness of the sorbent medium. Ac- 
cording to the data in [17], a summation of the interaction energies of volume elements in the sorbent will 
yield higher values for ~disp than formula (18).. For organic compounds with the linear dimension d = 4.6 

this value is approximately 3.0 times higher at z = d and 1.5 times higher at z -~ 3d; at distances z > 5d 
summation and integration yield approximately the same results. With this in mind, we can now obtain an 
approximate but more accurate relation for the energy of dispersive interaction as a function of z: 

where 

uCNr [1 -~- exp (A + BP)I, (19) 
~disp -= 6z--- T 

4 20 
A -  ; B -  .10 ~7, cm "4. 

5 9 

The adsorpt ion potential of the adsorbent  field can be calculated, therefore ,  if the nature of both 
sorbent  and sorbate  are  known as well as the e lec t r ic - f ie ld  topography of the sur face .  With (16) taken 
into account express ion  (1) becomes finally 

2:~%kTa X2 ~ -l- q) -- k T  X c t h X - -  I + ~ ] q~disp' (20) 

The last express ion  is used for calculating the thermodynamic  p a r a m e t e r s  of adsorption films of 
polar  liquids at equilibrium and for  formulating the equations of state of moist  ma te r i a l s .  
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NOTATION 

component of the dipole moment of a molecule (or radical) in the direction of the field; 
angle between dipole axis and the direction of the field; 
dielectric constant; 
relative dielectric permittivity of sorbent; 
distance from given point to the dipole; 
field potential; 
surface charge (or dipole) density; 
parameter of the domain lattice; 
linear dimension of the domain; 
distance from center of the dipole of a radical to its mirror image; 
angle of maximum dipole twist from its mean orientation; 
thickness of the adsorption film; 
length of the dipole; 
dipole moment of a molecule (or radical); 
potential energy of a molecule in the adsorbent field; 
Boltzmann constant; 
te rope rature; 
mean statistical value of cos 8; 

333 



C 
Nr 

is the London constant; 
is the number of molecules per unit sorbent volume. 

S u b s c  r i p t s  

r refers to the sorbent. 

S u p e r s c r i p t s  

' refers to the adsorption film; 
, refers to the vapor phase. 
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